FACULTY OF MECHANICAL ENGINEERING, CZECH TECHNICAL UNIVERSITY IN PRAGUE

Topics of Bachelor Thesis

Study Programme:

Engineering – Power and Process Technology

Scope to Process Technology

Academic Year: 2020/2021

Supervisor	Торіс
assoc. prof. Ing. Karel Petera, Ph.D.	Modeling light distribution
	This work aims at description and assessment of avail-
	able numerical methods used for simulations of light
	propagation in systems like photobioreactors. The
	light is the key factor of algae growth and its permea-
	bility decreases with increasing density of algae cul-
	ture. The light intensity decreases with increasing dis-
	tance from the illuminated wall in general. It can be
	affected by the hydrodynamics of the given system
	which is determined by the geometry and operational
	parameters. Light is electromagnetic radiation in prin-
	ciple therefore radiation models (focused on visible
	part of electromagnetic spectrum) can be used in its
	description. A proper model when describing such
	systems is very important in the design.
assoc. prof. Ing. Jan Skočilas, Ph.D.	Measurement of particle paramaters
	Physical properties of the particular material are im-
	portant characteristics for the designing of the equip-
	ment for the particle treatment. The aims of the bach-
	elor thesis are literature search, proposal of measure-
	ment methods, measurement realization, data evalua-
	tion for properties of specific particular material. The
	objective of investigation is the ceramic material which
	is produced in the rotary kill. Parameters of particles
	arction of the retary kiln
assas profiling lan Skočilas Ph.D.	Phoology of viscoalastic material
assoc. prof. mg. Jan Skochas, Ph.D.	The identification of flow properties of investigated
	material especially when the material exhibits Non-
	Newtonian behavior which is usual for food is pre-
	ceding key step in design of the equipment deter-
	mined for material transport, e.g. in pipes. The aim of
	the work is assessment of the viscoelastic properties
	of the collagen matter in the capillary rheometer. The
	assessment of viscoelastic parameters of collagen mat-
	ter will be performed by observation of the phenome-
	na "Die swell" known also as "Extrudate swell" or "Ba-
	rus effect". This effect is manifested by swelling of the

	outer dimension of the product compare to dimension
	of the capillary die. Based on the image analysis of
	dimensions of the product in the vicinity of die it is
	possible to determine swell ratio, from which the vis-
	coelastic properties are possible to obtain.
Ing. Jiří Moravec, Ph.D.	Measuring system for rheological experiments with
	suspensions
	The aim of the work is to propose an experimental
	equipment, which would enable to measure flow
	properties of liquids and suspensions. The measuring
	system should consist of a cup and rotor in form of an
	impeller and should be applicable for mounting on
	rheometer Rheotec RC20. The work should contain
	basic literature search about impellers which are used
	for such purpose and the methodology of measure-
	ment. The main part will be aimed on design of the
	whole measuring system, especially the measuring
	cup. Complete drawing documentation should be pre-
	pared for both parts – measuring cup and impeller.
	Experimental part of work can be added to verify the
	design of the new sensor.
Ing. Jiří Moravec. Ph.D.	Impellers for measurement of rheological properties
	The aim of the work is to find stirrers which could be
	used for experimental measurements of flow proper-
	ties of different substances and describe their process
	properties. In the first step, a literature search focused
	on stirrers and their process parameters should be
	carried out. The goal is to find, what types of stirrers
	are suitable for rheological measurements with sus-
	pension especially (based on power and suspension
	characteristics). In the second step, power characteris-
	tics should be determined for each chosen type of
	stirrer and its configuration in a measuring cup (ves-
	sel). The obtained data should be compared to the
	results of a literature search and the best measuring
	system stirrer – impeller suitable for flow properties
	measurement should be proposed.
Ing. Jiří Moravec, Ph.D.	Power characteristics of impellers at low liquid level
	The topic is aimed on experimental observation of
	behavior of different impellers during draining of lig-
	uid from a tank. Especially, a power consumption of
	impellers in such situation should be studied. The work
	has to be done experimentally, but a CFD description
	of the flow in a vessel at low liquid level can be also
	added (depending on student's choice). More types of
	impellers should be studied in the work.
Ing. Jiří Moravec, Ph.D.	Free topic
	supervisor: Ing. Jiří Moravec, Ph.D.
	I offer supervision of bachelor thesis with own topic
	prepared by student. The topic can be focused on any
	field of process engineering (engineering or computa-

	tional design of equipment, balancing of processes,
	experimental works, computational fluid dynamics,
	etc.). The final topic and goals of work are prepared
	after consultation with the student.
Ing. Jaromír Štancl, Ph.D.	Design of pasteurization equipment with direct ohm-
	ic heating
	The aim of this work is to become familiar with proce-
	dures for thermal treatment of food materials. The
	literature review should be focused on principle of
	direct ohmic heating for thermal processing of foods
	and the construction of industrially used ohmic heat-
	ing pasteurization devices. Based on acquired
	knowledge the basic design of the ohmic heating pas-
	teurization device for aseptic processing of fruit or
	vegetable juices or purees (quarter to pilot plant scale)
~~~~~~	would be made.
Ing. Jaromír Štancl, Ph.D.	Measuring the electrical conductivity of solid foods
	The aim of this work is to become familiar with proce-
	dures for measuring the electrical conductivity of food
	materials in the form of literature review focused on
	methods of measuring the electrical conductivity of
	various substances. Based on acquired knowledge
	experimentally determine the dependence of the elec-
	trical conductivity of selected food material on tem-
	perature, moisture content or frequency.
ing. Michai Netusii, Ph.D.	Air intration
	Testing of real filter elements. Evaluation of tests and
	recommendations for filtration of air pollutants
Ing Stanislay Solnař	Static vs. dynamic methods
ling. Stanislav Solilai	In experimental measurements, we can encounter two
	types of measurement methods static or dynamic
	Static methods are usually characterized by their
	transferability, but they are time consuming. Dynamic
	methods, on the other hand, are very fast and allow
	you to get a large amount of information in a very
	short time. Prepare experimental measurements,
	where you will compare both methods on the selected
	geometry.
Ing. Stanislav Solnař	Measurement of radiative heat flux
	Measuring the heat flow in a solid wall is a fairly mas-
	tered engineering task. But what will happen when
	measuring heat flux in liquids and gases? And what if I
	need to measure the incident heat flux on the wall (eg
	from the sun)? Prepare a research on the topic of
	measuring radiative heat flux and prepare a design of
	a measuring element.
Ing. Stanislav Solnař	Heat exchangers in PC
	Increasing the performance of our PCs also goes hand
	in hand with higher heat dissipation. A very modern
	method of cooling individual parts is the use of a water

	circuit with heat exchangers. Design and experimental-
	ly measure the power and loss characteristics of your
	own heat exchanger.
Ing. Viktor Vajc	CIP cleaning for production lines
	Study methods and procedures of CIP (clean-in-place)
	cleaning of apparatuses, pipelines and other equip-
	ment of production lines. For a chosen line, draw a PID
	diagram of an automatic CIP cleaning system including
	suitable cleaning media, pumps, MaR and operating
	parameters of the system. Suggest modifications for
	one of the apparatuses in the line which are necessary
	in order to switch from manual to CIP cleaning. Create
	drawings for such an adjustment.
Ing. Viktor Vajc	Ecological refrigerants
	Several often-used refrigerants were banned due to
	the actions taken in order to slow down global warm-
	ing and depletion of the ozone layer. These refriger-
	ants were replaced by more ecologic and environ-
	ment-friendly alternatives. Create a survey dealing
	with current state and future prognosis in the branch
	of industrial refrigerants. Compare important refriger-
	ants which were used in the past with their contempo-
	rary alternatives. Focus on comparison of thermophys-
	ical, ecological and economical parameters of these
	refrigerants. Design a cooling system for a chosen
	technical application. Compare the operation of the
	designed system with several suitable refrigerants.
Ing. Mgr. Vojtěch Bělohlav	Mixing of the culture medium in a flat panel photobi-
	oreactor
	Design the component for culture medium homogeni-
	zation in flat panel photobioreactor. Prepare a litera-
	ture and patent review of existing design variants for
	mixing and homogenization of culture medium in cul-
	tivation systems. Based on the critical review, select
	the most suitable design that could be implemented
	on an industrial scale. Develop a basic design and 3D
	model of the component for pilot-plant photobioreac-
	tor.
Ing. Mgr. Vojtech Belohlav	Aeration of cultivation systems for the production of
	3rd generation biomass
	The aim of this work is to compare the operating costs
	of aeration of cultivation systems for the processing of
	Sid generation biomass. Prepare a interature and in-
	technologies and design variants of systems using a
	mixture of air and pure CO2, or waste CO2. Deced on a
	mixture of air and pure CO2, or waste CO2. Based on a
	contract review, make a comparison of the operating
	composition of aeration gas for the selected design of
	the cultivation system
Ing Mar Voitžah Pělahlav	Effortive methods of microalgae horizoting
ing. wigr. vojtech beloniav	Energine methous of microalgae narvesting

Harvesting and dewatering is one of the key unit of the
3rd generation hiomass production technology, which
significantly affects the economic aspect of the whole
technology. The sim of this work is to propage a litera
technology. The aim of this work is to prepare a litera-
ture and industrial review of existing technologies and
design variants for microalgae harvesting. Based on a
critical review, select the most suitable technologies
that could be implemented on an industrial scale. De-
fine basic design and operating parameters for the
selected technology. Based on the selected parame-
ters, a basic design of the selected technology will be
developed.
Elocculation and Biopolymers
Elocculation is a widely applied technology mainly
used for wastewater treatment. So-called coogulants
are also commonly used then the process is called
are also commonly used, then, the process is called
coagulation. whereas coagularits are usually metal
salts, flocculants may be of organic or inorganic origin.
The organic ones are often referred to as biopolymers.
The major advantage is related to their recycling, bio-
degradability and they do not induce contamination of
the medium as well. The aim of the thesis is to focus
on the field of biopolymers applied during flocculation,
not only for wastewater treatment, and their essential
modifications before the entire process. The student
should also acquaint with fundamental definitions
(colloid stability destabilization coogulation etc.) to
got a full everyiew of the tenic
get a full overview of the topic.
Substitutes for Plastics
with a growing amount of plastic waste, new materi-
als are emerged, which can be easily composted. The
aim of the thesis is to focus on the field of substitutes
for plastics, eventually of the processes, which make
the recycling of plastics easier, and the manufacturing
processes and technologies of these substitutes. The
thesis should also consider the methods of their (plas-
tics, substitutes) recycling, eventually the problems
related to their recycling. The student should also ac-
quaint with fundamental definitions to get a full over-